• 四川大學(xué)華西醫(yī)院腫瘤科(成都,610041);

近年來,納米技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用研究得到了迅速發(fā)展。在乳腺癌的診斷和治療中,納米技術(shù)不僅可以高效精確地定量檢測腫瘤組織的分子標(biāo)志物,顯示微小的惡性病灶和前哨淋巴結(jié),還可為抗腫瘤藥物、放射增敏劑、基因治療等提供良好的藥物載體,顯示了其廣闊的應(yīng)用前景。

引用本文: 雷娜,羅鋒. 納米技術(shù)在乳腺癌診斷和治療中的研究進(jìn)展. 華西醫(yī)學(xué), 2012, 27(5): 775-778. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《華西醫(yī)學(xué)》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1.  Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90.
2.  Tanaka T, Paolo D, Cristofanilli M, et al. Nanotechnology for breast cancer therapy[J]. Biomed Microdevices, 2009, 11(1): 49-63.
3.  Kim B, Rutk JT, Chan W. Nanomedicine[J]. N Engl J Med, 2010, 363: 2434-2443.
4.  Xiao Y, Telford WG, Ball JC, et al. Semiconductor nanocrystal conjugates, FISH and pH[J]. Nat Methods, 2005, 2(10): 723.
5.  Chen C, Sun SR, Gong YP, et al. Quantum dots-based molecular classi?cation of breast cancer by quantitative spectroanalysis of hormone receptors and HER2[J]. Biomaterials, 2011, 32(30): 7592-7599.
6.  Yezhelyev MV, Al HA, Morris C, et al. In situ molecular profling of breast cancer biomarkers with multicolor quantum dots[J]. Adv Materials, 2007, 19(20): 3146-3151.
7.  Peters NH, Borel Rinkes IH, Zuithoff NP, et al. Meta-analysis of MR imaging in the diagnosis of breast lesions[J]. Radiology, 2008, 246(1): 116-124.
8.  陳棟, 羅陽, 黃慶, 等. 量子點(diǎn)及其在腫瘤診斷中的應(yīng)用研究進(jìn)展[J]. 國際檢驗(yàn)醫(yī)學(xué)雜志, 2011, 32(5): 589-591.
9.  Sunderland CJ, Steiert M, Talmadge JE, et al. Nanoparticles for detecting and treating cancer[J]. Drug Dev Res, 2006, 67(1): 70-93.
10.  劉國華, 陳燕明. 超微超順磁性氧化鐵納米粒及其在腫瘤磁共振成像中的應(yīng)用[J]. 醫(yī)學(xué)綜述, 2010, 16(16): 2494-2497.
11.  李緒斌, 杜湘珂, 霍天龍, 等. 乳腺癌特異性磁共振分子探針的制備及體外實(shí)驗(yàn)[J]. 北京大學(xué)學(xué)報(bào):醫(yī)學(xué)版, 2009, 41(2): 179-183.
12.  Meng J, Fan J, Galiana G, et al. LHRH-functionalized superparamagnetic Iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI[J]. Mater Sci Eng, 2009, 29(4): 1467-1479.
13.  Uren RF. Cancer surgery joins the dots[J]. Nat Biotechnol, 2004, 22(1): 38-39.
14.  Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent typeⅡquantum dots for sentinel lymph node mapping[J]. Nat Biotechnol, 2004, 22(1): 93-97.
15.  Hyun SK, Kim C, Maslov K, et al. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes[J]. Eur J Radiol, 2009, 70(2): 227-231.
16.  Maeda H, Fang J, Inutsuka T, et al. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications[J]. Int Immunopharmacol, 2003, 3(3): 319-328.
17.  賈晉斌, 韋青燕. 阿霉素脂質(zhì)體的研究進(jìn)展[J]. 中國腫瘤, 2011, 20(5): 372-377.
18.  Chan S, Davidson N, Juozaityte E, et al. PhaseⅢ trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer[J]. Ann Oncol, 2004, 15(10): 1527-1534.
19.  O’brien ME, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phaseⅢ trial of pegylated liposomal doxorubicin HCL(Caelyxtm/Doxil?)versus conventional doxorubicin for ?rst-line treatment of metastatic breast cancer[J]. Ann Oncol, 2004, 15(3): 440-449.
20.  尹曉東, 姚嬙, 李維廉. 白蛋白結(jié)合型紫杉醇的研究進(jìn)展[J]. 現(xiàn)代腫瘤醫(yī)學(xué), 2011, 19(7): 1449-1452.
21.  王莉, 王季堃, 李巍, 等. p53對MDR1在腫瘤中表達(dá)的影響及研究進(jìn)展[J]. 中國醫(yī)學(xué)工程, 2010, 18(4): 161-162.
22.  Onyüksel H, Jeon E, Rubinstein I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells[J]. Cancer Lett, 2009, 274(2): 327-330.
23.  Shuhendler AJ, Cheung RY, Manias J, et al. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells[J]. Breast Cancer Res Treat, 2010, 119(2): 255-269.
24.  Patil YB, Swaminathan SK, Sanhukha T, et al. The use of nanoparticle-mediated targeted gene silence and drug delivery to overcome tumor drug resistance[J]. Biomaterials, 2010, 31 (2): 358-365.
25.  Cho S, Jeong JH, Kim CH, et al. Monte Carlo simulation study on dose enhancement by Gold nanoparticles in brachytherapy[J]. J Korean Astron Soc, 2010, 56(6): 1754-1758.
26.  Nath R, Yue N, Weinberger J. Dose perturbations by high atomic number materials in intravascular brachytherapy[J]. Cardiovasc Radiat Med, 1999, 1(2): 144-153.
27.  Khafif A, Hurst R, Kyker K, et al. Curcumin: a new radio-sensitizer of squamous cell carcinoma cells[J]. Otolaryngol Head Neck Surg, 2005, 132(2): 317-321.
28.  Chang MY, Shiau AL, Chen YH, et al. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice[J]. Cancer Sci, 2008, 99(7): 1479-1484.
29.  Jeong SY, Park SJ, Yoon SM, et al. Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization[J]. J Control Release, 2009, 139(3): 239-245.
30.  Takahashi S, Ito Y, Hatake K, et al. Gene therapy for breast cancer. Review of clinical gene therapy trials for breast cancer and MDR1 gene therapy trial in Cancer Institute Hospital[J]. Breast Cancer, 2006, 13(1): 8-15.
31.  劉曉華, 稅青林. 乳腺癌的基因治療研究[J]. 現(xiàn)代診斷與治療, 2011, 22(1): 29-31.
32.  Liu C, Zhang N. Nanoparticles in gene therapy principles, prospects, and challenges[J]. Prog Mol Biol Transl Sci, 2011, 104: 509-562.
33.  Prabha S, Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells[J]. Mol Pharm, 2004, 1(3): 211-219.
34.  Yan DH, Chang LS, Hung MC. Repressed expression of the HER-2/c-erbB-2 proto-oncogene by the adenovirus E1a gene products[J]. Oncogene, 1991, 6(2): 343-345.
35.  Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer[J]. Int J Pharm, 2005, 293(1-2): 261-270.
36.  Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc Natl Acad Sci USA, 2003, 100(23): 13549-13554.
37.  Shubayev VI, Pisanic IR, Jin S. Magnetic nanoparticles for theragnostics[J]. Adv Drug Deliv Rev, 2009, 61(6): 467-477.
38.  Lukianova-Hleb EY, Hanna EY, Hafner JH, et al. Tunable plasmonic nanobubbles for cell theranostics[J]. Nanotechnology, 2010, 21(8): 85102.
39.  Suk SM, Soo KC, Yeh-Chan A, et al. Combined multimodal optical imaging and targeted gene silencing using stimuli-transforming nanotheragnostics[J]. J Am Chem Soc, 2010, 132(24): 8316-8324.
40.  Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy[J]. Nano Lett, 2005, 5(4): 709-711.
41.  Rastogi A. Nanooncology: the breast cancer story[J]. UTMJ, 2011, 88(3): 190-194.
  1. 1.  Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90.
  2. 2.  Tanaka T, Paolo D, Cristofanilli M, et al. Nanotechnology for breast cancer therapy[J]. Biomed Microdevices, 2009, 11(1): 49-63.
  3. 3.  Kim B, Rutk JT, Chan W. Nanomedicine[J]. N Engl J Med, 2010, 363: 2434-2443.
  4. 4.  Xiao Y, Telford WG, Ball JC, et al. Semiconductor nanocrystal conjugates, FISH and pH[J]. Nat Methods, 2005, 2(10): 723.
  5. 5.  Chen C, Sun SR, Gong YP, et al. Quantum dots-based molecular classi?cation of breast cancer by quantitative spectroanalysis of hormone receptors and HER2[J]. Biomaterials, 2011, 32(30): 7592-7599.
  6. 6.  Yezhelyev MV, Al HA, Morris C, et al. In situ molecular profling of breast cancer biomarkers with multicolor quantum dots[J]. Adv Materials, 2007, 19(20): 3146-3151.
  7. 7.  Peters NH, Borel Rinkes IH, Zuithoff NP, et al. Meta-analysis of MR imaging in the diagnosis of breast lesions[J]. Radiology, 2008, 246(1): 116-124.
  8. 8.  陳棟, 羅陽, 黃慶, 等. 量子點(diǎn)及其在腫瘤診斷中的應(yīng)用研究進(jìn)展[J]. 國際檢驗(yàn)醫(yī)學(xué)雜志, 2011, 32(5): 589-591.
  9. 9.  Sunderland CJ, Steiert M, Talmadge JE, et al. Nanoparticles for detecting and treating cancer[J]. Drug Dev Res, 2006, 67(1): 70-93.
  10. 10.  劉國華, 陳燕明. 超微超順磁性氧化鐵納米粒及其在腫瘤磁共振成像中的應(yīng)用[J]. 醫(yī)學(xué)綜述, 2010, 16(16): 2494-2497.
  11. 11.  李緒斌, 杜湘珂, 霍天龍, 等. 乳腺癌特異性磁共振分子探針的制備及體外實(shí)驗(yàn)[J]. 北京大學(xué)學(xué)報(bào):醫(yī)學(xué)版, 2009, 41(2): 179-183.
  12. 12.  Meng J, Fan J, Galiana G, et al. LHRH-functionalized superparamagnetic Iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI[J]. Mater Sci Eng, 2009, 29(4): 1467-1479.
  13. 13.  Uren RF. Cancer surgery joins the dots[J]. Nat Biotechnol, 2004, 22(1): 38-39.
  14. 14.  Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent typeⅡquantum dots for sentinel lymph node mapping[J]. Nat Biotechnol, 2004, 22(1): 93-97.
  15. 15.  Hyun SK, Kim C, Maslov K, et al. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes[J]. Eur J Radiol, 2009, 70(2): 227-231.
  16. 16.  Maeda H, Fang J, Inutsuka T, et al. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications[J]. Int Immunopharmacol, 2003, 3(3): 319-328.
  17. 17.  賈晉斌, 韋青燕. 阿霉素脂質(zhì)體的研究進(jìn)展[J]. 中國腫瘤, 2011, 20(5): 372-377.
  18. 18.  Chan S, Davidson N, Juozaityte E, et al. PhaseⅢ trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer[J]. Ann Oncol, 2004, 15(10): 1527-1534.
  19. 19.  O’brien ME, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phaseⅢ trial of pegylated liposomal doxorubicin HCL(Caelyxtm/Doxil?)versus conventional doxorubicin for ?rst-line treatment of metastatic breast cancer[J]. Ann Oncol, 2004, 15(3): 440-449.
  20. 20.  尹曉東, 姚嬙, 李維廉. 白蛋白結(jié)合型紫杉醇的研究進(jìn)展[J]. 現(xiàn)代腫瘤醫(yī)學(xué), 2011, 19(7): 1449-1452.
  21. 21.  王莉, 王季堃, 李巍, 等. p53對MDR1在腫瘤中表達(dá)的影響及研究進(jìn)展[J]. 中國醫(yī)學(xué)工程, 2010, 18(4): 161-162.
  22. 22.  Onyüksel H, Jeon E, Rubinstein I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells[J]. Cancer Lett, 2009, 274(2): 327-330.
  23. 23.  Shuhendler AJ, Cheung RY, Manias J, et al. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells[J]. Breast Cancer Res Treat, 2010, 119(2): 255-269.
  24. 24.  Patil YB, Swaminathan SK, Sanhukha T, et al. The use of nanoparticle-mediated targeted gene silence and drug delivery to overcome tumor drug resistance[J]. Biomaterials, 2010, 31 (2): 358-365.
  25. 25.  Cho S, Jeong JH, Kim CH, et al. Monte Carlo simulation study on dose enhancement by Gold nanoparticles in brachytherapy[J]. J Korean Astron Soc, 2010, 56(6): 1754-1758.
  26. 26.  Nath R, Yue N, Weinberger J. Dose perturbations by high atomic number materials in intravascular brachytherapy[J]. Cardiovasc Radiat Med, 1999, 1(2): 144-153.
  27. 27.  Khafif A, Hurst R, Kyker K, et al. Curcumin: a new radio-sensitizer of squamous cell carcinoma cells[J]. Otolaryngol Head Neck Surg, 2005, 132(2): 317-321.
  28. 28.  Chang MY, Shiau AL, Chen YH, et al. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice[J]. Cancer Sci, 2008, 99(7): 1479-1484.
  29. 29.  Jeong SY, Park SJ, Yoon SM, et al. Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization[J]. J Control Release, 2009, 139(3): 239-245.
  30. 30.  Takahashi S, Ito Y, Hatake K, et al. Gene therapy for breast cancer. Review of clinical gene therapy trials for breast cancer and MDR1 gene therapy trial in Cancer Institute Hospital[J]. Breast Cancer, 2006, 13(1): 8-15.
  31. 31.  劉曉華, 稅青林. 乳腺癌的基因治療研究[J]. 現(xiàn)代診斷與治療, 2011, 22(1): 29-31.
  32. 32.  Liu C, Zhang N. Nanoparticles in gene therapy principles, prospects, and challenges[J]. Prog Mol Biol Transl Sci, 2011, 104: 509-562.
  33. 33.  Prabha S, Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells[J]. Mol Pharm, 2004, 1(3): 211-219.
  34. 34.  Yan DH, Chang LS, Hung MC. Repressed expression of the HER-2/c-erbB-2 proto-oncogene by the adenovirus E1a gene products[J]. Oncogene, 1991, 6(2): 343-345.
  35. 35.  Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer[J]. Int J Pharm, 2005, 293(1-2): 261-270.
  36. 36.  Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc Natl Acad Sci USA, 2003, 100(23): 13549-13554.
  37. 37.  Shubayev VI, Pisanic IR, Jin S. Magnetic nanoparticles for theragnostics[J]. Adv Drug Deliv Rev, 2009, 61(6): 467-477.
  38. 38.  Lukianova-Hleb EY, Hanna EY, Hafner JH, et al. Tunable plasmonic nanobubbles for cell theranostics[J]. Nanotechnology, 2010, 21(8): 85102.
  39. 39.  Suk SM, Soo KC, Yeh-Chan A, et al. Combined multimodal optical imaging and targeted gene silencing using stimuli-transforming nanotheragnostics[J]. J Am Chem Soc, 2010, 132(24): 8316-8324.
  40. 40.  Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy[J]. Nano Lett, 2005, 5(4): 709-711.
  41. 41.  Rastogi A. Nanooncology: the breast cancer story[J]. UTMJ, 2011, 88(3): 190-194.