【摘 要】 目的 檢驗(yàn)陽離子脂質(zhì)體包封萬古霉素復(fù)合納米羥基磷灰石/ 殼聚糖/ 魔芋葡甘聚糖(nanohydroxyapatite/
chitosan/konjac glucomannan,n-HA/CS/KGM)支架體內(nèi)抗感染及骨修復(fù)活性。 方法 取6 月齡健康新
西蘭大白兔51 只,體重1.5 ~ 3.0 kg,用金黃色葡萄球菌制備慢性感染性雙側(cè)脛骨骨缺損模型。將造模后4 周存活的48
只兔隨機(jī)分為4 組,每組12 只。根據(jù)以下分組方法,分別于雙側(cè)骨缺損處植入相應(yīng)支架。A 組:清創(chuàng)后不作任何處理;B
組:n-HA/CS/KGM 空白支架組;C 組:萬古霉素復(fù)合n-HA/CS/KGM 支架組;D 組:萬古霉素陽離子脂質(zhì)體復(fù)合n-HA/
CS/KGM 支架組。治療后8 周行大體、骨缺損修復(fù)、組織學(xué)觀察以及X 線片、細(xì)菌學(xué)檢查。 結(jié)果 實(shí)驗(yàn)動(dòng)物造模后4 周
X 線片顯示明顯骨質(zhì)缺損、低密度影及軟組織腫脹影,Norden 評(píng)分均 gt; 3 分,為(3.83 ± 0.52)分。治療后8 周大體觀察:C、D 組竇道已愈合,A、B 組仍有竇道;大體觀察病理評(píng)分C、D 組明顯優(yōu)于A、B 組(P lt; 0.05)。骨缺損修復(fù)觀察:D 組骨缺損已修復(fù),骨缺損最長徑顯著優(yōu)于A、B、C 組(P lt; 0.05)。X 線片檢查:C、D 組可見新骨形成,A、B 組可見骨膜反應(yīng)及髓腔低密度影;Norden 評(píng)分D 組明顯小于A、B、C 組(P lt; 0.05)。組織學(xué)觀察:HE 染色示C、D 組可見大量骨小梁形成,
纖維增生,未見明顯感染跡象,A、B 組仍可見中性粒細(xì)胞積聚;Smeltzer 評(píng)分C、D 組明顯優(yōu)于A、B 組(P lt; 0.05)。細(xì)菌
學(xué)檢查:C、D 組陰性率明顯高于A、B 組(P lt; 0.05)。 結(jié)論 萬古霉素陽離子脂質(zhì)體復(fù)合n-HA/CS/KGM 支架可很好治
療兔慢性感染性脛骨骨缺損,為臨床上治療慢性感染性骨缺損提供了新思路。
引用本文: 黃金亮,馬濤,唐輝,范新宇,徐永清. 萬古霉素陽離子脂質(zhì)體復(fù)合納米羥基磷灰石/ 殼聚糖/魔芋葡甘聚糖治療兔慢性感染性骨缺損. 中國修復(fù)重建外科雜志, 2012, 26(2): 190-195. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國修復(fù)重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | Gustilo RB, Merkow RL, Templeman D. The management of open fractures. J Bone Joint Surg (Am), 1990, 72(2): 299-304. |
2. | de Carvalho CC. Biofilms: recent developments on an old battle. Recent Pat Biotechnol, 2007, 1(1): 49-57. |
3. | Widmer AF. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis, 2001, 33 Suppl 2: S94-106. |
4. | Kim HJ, Jones MN. The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Liposome Res, 2004, 14(3-4): 123-139. |
5. | Ma T, Shang BC, Tang H, et al. Nano-hydroxyapatite/chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin: preparation, in vitro release and activity against Staphylococcus aureus biofilms. J Biomater Sci Polym Ed, 2011, 22(12): 1669-1681. |
6. | Norden CW, Myerowitz RL, Keleti E. Experimental osteomyelitis due to Staphylococcus aureus or Pseudomonas aeruginosa: a radiographic-pathological correlative analysis. Br J Exp Pathol, 1980, 61(4): 451-460. |
7. | Rissing JP, Buxton TB, Weinstein RS, et al. Model of experimental chronic osteomyelitis in rats. Infect Immun, 1985, 47(3): 581-586. |
8. | Smeltzer MS, Thomas JR, Hickmon SG, et al. Characterization of a rabbit model of staphylococcal osteomyelitis. J Orthop Res, 1997, 15(3): 414-421. |
9. | Hatzenbuehler J, Pulling TJ. Diagnosis and management of osteomyelitis. Am Fam Physician, 2011, 84(9): 1027-1033. |
10. | Popat KC, Eltgroth M, Latempa TJ, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials, 2007, 28(32): 4880-4888. |
11. | Ince A, Schutze N, Hendrich C, et al. Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells. Swiss Med Wkly, 2007, 137(9-10): 139-145. |
12. | van de Belt H, Neut D, Uges DR, et al. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials, 2000, 21(19): 1981-1987. |
13. | Movassaghian S, Moghimi HR, Shirazi FH, et al. Dendrosome-dendriplex inside liposomes: as a gene delivery system. J Drug Target, 2011, 19(10): 925-932. |
14. | Halwani M, Yebio B, Suntres ZE, et al. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother, 2008, 62(6): 1291-1297. |
15. | Moghimi SM, Porter CJ, Illum L, et al. The effect of poloxamer-407 on liposome stability and targeting to bone marrow:comparison with polystyrene microspheres. Int J Pharnm, 1991, 68(1-3): 121-126. |
16. | Kadry AA, Al-Suwayeh SA, Abd-Allah AR, et al. Treatment of experimental osteomyelitis by liposomal antibiotics. J Antimicrob Chemother, 2004, 54(6): 1103-1108. |
17. | Trafny EA, Stepinska M, Antos M, et al. Effects of free and liposome-encapsulated antibiotics on adherence of Pseudomonas aeruginosa to collagen type I. Antimicrob Agents Chemother, 1995, 39(12): 2645-2649. |
18. | Datta N, Pham QP, Sharma U, et al. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci U S A, 2006, 103(8): 2488-2493. |
19. | Kankilic B, Bayramli E, Kilic E, et al. Vancomycin containing PLLA/β-TCP controls MRSA in vitro. Clin Orthop Relat Res, 2011, 469(11): 3222-3228. |
20. | Zhu CT, Xu YQ, Shi J, et al. Liposome combined porous beta-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv, 2010, 17(6): 391-398. |
21. | Zhou G, Li Y, Zhang L, et al. Preparation and characterization of nano-hydroxyapatite/chitosan/konjac glucomannan composite. J Biomed Mater Res A, 2007, 83(4): 931-939. |
- 1. Gustilo RB, Merkow RL, Templeman D. The management of open fractures. J Bone Joint Surg (Am), 1990, 72(2): 299-304.
- 2. de Carvalho CC. Biofilms: recent developments on an old battle. Recent Pat Biotechnol, 2007, 1(1): 49-57.
- 3. Widmer AF. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis, 2001, 33 Suppl 2: S94-106.
- 4. Kim HJ, Jones MN. The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Liposome Res, 2004, 14(3-4): 123-139.
- 5. Ma T, Shang BC, Tang H, et al. Nano-hydroxyapatite/chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin: preparation, in vitro release and activity against Staphylococcus aureus biofilms. J Biomater Sci Polym Ed, 2011, 22(12): 1669-1681.
- 6. Norden CW, Myerowitz RL, Keleti E. Experimental osteomyelitis due to Staphylococcus aureus or Pseudomonas aeruginosa: a radiographic-pathological correlative analysis. Br J Exp Pathol, 1980, 61(4): 451-460.
- 7. Rissing JP, Buxton TB, Weinstein RS, et al. Model of experimental chronic osteomyelitis in rats. Infect Immun, 1985, 47(3): 581-586.
- 8. Smeltzer MS, Thomas JR, Hickmon SG, et al. Characterization of a rabbit model of staphylococcal osteomyelitis. J Orthop Res, 1997, 15(3): 414-421.
- 9. Hatzenbuehler J, Pulling TJ. Diagnosis and management of osteomyelitis. Am Fam Physician, 2011, 84(9): 1027-1033.
- 10. Popat KC, Eltgroth M, Latempa TJ, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials, 2007, 28(32): 4880-4888.
- 11. Ince A, Schutze N, Hendrich C, et al. Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells. Swiss Med Wkly, 2007, 137(9-10): 139-145.
- 12. van de Belt H, Neut D, Uges DR, et al. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials, 2000, 21(19): 1981-1987.
- 13. Movassaghian S, Moghimi HR, Shirazi FH, et al. Dendrosome-dendriplex inside liposomes: as a gene delivery system. J Drug Target, 2011, 19(10): 925-932.
- 14. Halwani M, Yebio B, Suntres ZE, et al. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother, 2008, 62(6): 1291-1297.
- 15. Moghimi SM, Porter CJ, Illum L, et al. The effect of poloxamer-407 on liposome stability and targeting to bone marrow:comparison with polystyrene microspheres. Int J Pharnm, 1991, 68(1-3): 121-126.
- 16. Kadry AA, Al-Suwayeh SA, Abd-Allah AR, et al. Treatment of experimental osteomyelitis by liposomal antibiotics. J Antimicrob Chemother, 2004, 54(6): 1103-1108.
- 17. Trafny EA, Stepinska M, Antos M, et al. Effects of free and liposome-encapsulated antibiotics on adherence of Pseudomonas aeruginosa to collagen type I. Antimicrob Agents Chemother, 1995, 39(12): 2645-2649.
- 18. Datta N, Pham QP, Sharma U, et al. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci U S A, 2006, 103(8): 2488-2493.
- 19. Kankilic B, Bayramli E, Kilic E, et al. Vancomycin containing PLLA/β-TCP controls MRSA in vitro. Clin Orthop Relat Res, 2011, 469(11): 3222-3228.
- 20. Zhu CT, Xu YQ, Shi J, et al. Liposome combined porous beta-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv, 2010, 17(6): 391-398.
- 21. Zhou G, Li Y, Zhang L, et al. Preparation and characterization of nano-hydroxyapatite/chitosan/konjac glucomannan composite. J Biomed Mater Res A, 2007, 83(4): 931-939.