• 第三軍醫(yī)大學新橋醫(yī)院骨科(重慶,400037);

目的 建立一套在腰椎MRI短時間反轉恢復(short time inversion recovery,STIR)序列圖像上評價腰椎間盤退變程度的改良STIR序列八級分級系統(tǒng),并檢驗其效度及可重復性。 方法根據改良Pfirrmann八級分級系統(tǒng)及MRI檢查結果建立并優(yōu)化一套基于STIR序列圖像的腰椎間盤矢狀位分級系統(tǒng)。以2011年4月-2012年2月收治的60例腰椎間盤退行性變患者作為研究對象,其中男32例,女28例;年齡17~85歲,平均50歲。對每例研究對象5個腰椎間盤(L1、2~L5、S1)行T2加權像及STIR序列掃描。由3位分級者獨立分級后再共同分級,分級者之間的效度及可重復性采用一致率和Kappa系數進行分析。 結果共同分級示,所有椎間盤中無1級椎間盤,2級83個(27.7%),3 級 87個(29.0%),4級 66個(22.0%),5級 31個(10.3%),6級 15個(5.0%),7級 12個(4.0%),8級 6個(2.0%)。分級者自身達極強一致性(Kappa值0.822~0.952),組間達高度至極強一致性(Kappa值0.749~0.843)。分級者兩次分級與共同分級比較,分級一致率為82.7%~92.7%,平均85.6%;13.9%的分級差異發(fā)生于相鄰1個級別,0.5%為相鄰2個或以上 級別。 結論對于腰椎間盤退變程度可以采用改良STIR序列八級分級系統(tǒng),提高了不同退變程度椎間盤分級的準確度。

引用本文: 潘文琦,王建,劉杰,陸焱,黃博. 腰椎間盤退行性變的改良MRI短時間反轉恢復序列八級分級系統(tǒng). 中國修復重建外科雜志, 2012, 26(12): 1430-1434. doi: 復制

版權信息: ?四川大學華西醫(yī)院華西期刊社《中國修復重建外科雜志》版權所有,未經授權不得轉載、改編

1. Kettler A, Wilke HJ. Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J, 2006, 15(6): 705-718.
2. Pfirrmann CW, Metzdorf A, Zanetti A, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine, 2001, 26(17): 1873-1878.
3. Griffith JF, Wang YX, Antonio GE, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976), 2007, 32(24): E708-712.
4. Thompson JP, Pearce RH, Schechter MT, et al. Preliminary evaluation of ascheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976), 1990, 15(5): 411-415.
5. Adams MA, Dolan P, Hutton WC. The stages of disc degeneration as revealed by discograms. J Bone Joint Surg (Br), 1986, 68(1): 36-41.
6. Landis RJ, Koch GG. The measurement of observer agreement for categorical data. Biometrics, 1977, 33(1): 159-174.
7. Saifuddin A, Renton P, Taylor BA. Effects on the vertebral end-plate of uncomplicated lumbar discography: an MRI study. Eur Spine J, 1998, 7(1): 36-39.
8. Kapoor SG, Huff J, Cohen SP. Systematic review of the incidence of discitis after cervical discography. Spine J, 2010, 10(8): 739-745.
9. Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest, 1996, 98(4): 996-1003.
10. Liebscher T, Haefeli M, Wuertz K, et al. Age-related variation in cell density of human lumbar intervertebral disc. Spine, 2011, 36(2): 153-159.
11. Watanabe A, Benneker LM, Boesch C, et al. Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol, 2007, 189(4): 936-942.
12. Andersson GB. Epidemiology of low back pain. Acta Orthop Scand Suppl, 1998, 281: 28-31.
13. Peterson CK, Bolton JE, Wood AR. A cross-sectional study correlating lumbar spine degeneration with disability and pain. Spine, 2000, 25(2): 218-223.
14. Chiebler ML, Camerino VJ, Fallon MD, et al. In vivo and ex vivo magnetic resonance imaging evaluation of early disc degeneration with histopathologic correlation. Spine (Phila Pa 1976), 1991, 16(6): 635-640.
  1. 1. Kettler A, Wilke HJ. Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J, 2006, 15(6): 705-718.
  2. 2. Pfirrmann CW, Metzdorf A, Zanetti A, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine, 2001, 26(17): 1873-1878.
  3. 3. Griffith JF, Wang YX, Antonio GE, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976), 2007, 32(24): E708-712.
  4. 4. Thompson JP, Pearce RH, Schechter MT, et al. Preliminary evaluation of ascheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976), 1990, 15(5): 411-415.
  5. 5. Adams MA, Dolan P, Hutton WC. The stages of disc degeneration as revealed by discograms. J Bone Joint Surg (Br), 1986, 68(1): 36-41.
  6. 6. Landis RJ, Koch GG. The measurement of observer agreement for categorical data. Biometrics, 1977, 33(1): 159-174.
  7. 7. Saifuddin A, Renton P, Taylor BA. Effects on the vertebral end-plate of uncomplicated lumbar discography: an MRI study. Eur Spine J, 1998, 7(1): 36-39.
  8. 8. Kapoor SG, Huff J, Cohen SP. Systematic review of the incidence of discitis after cervical discography. Spine J, 2010, 10(8): 739-745.
  9. 9. Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest, 1996, 98(4): 996-1003.
  10. 10. Liebscher T, Haefeli M, Wuertz K, et al. Age-related variation in cell density of human lumbar intervertebral disc. Spine, 2011, 36(2): 153-159.
  11. 11. Watanabe A, Benneker LM, Boesch C, et al. Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol, 2007, 189(4): 936-942.
  12. 12. Andersson GB. Epidemiology of low back pain. Acta Orthop Scand Suppl, 1998, 281: 28-31.
  13. 13. Peterson CK, Bolton JE, Wood AR. A cross-sectional study correlating lumbar spine degeneration with disability and pain. Spine, 2000, 25(2): 218-223.
  14. 14. Chiebler ML, Camerino VJ, Fallon MD, et al. In vivo and ex vivo magnetic resonance imaging evaluation of early disc degeneration with histopathologic correlation. Spine (Phila Pa 1976), 1991, 16(6): 635-640.