目的 建立恒河猴外周血CD4+CD25+調(diào)節(jié)性T淋巴細(xì)胞(regulatory T cells,Tregs)快速有效的分離純化方法。 方法4~5歲健康恒河猴10只,雌性4只,雄性6只,體重5~8 kg;于大隱靜脈抽取外周血,每只抽取8 mL。密度梯度離心法分離外周血單個(gè)核細(xì)胞(peripheral blood mononuclear cell,PBMC),分別采用非人靈長(zhǎng)類Tregs分離試劑盒的生物素標(biāo)記的混合抗體和磁珠標(biāo)記的抗生物素抗體陰性分選,以及大鼠抗人CD4-活化蛋白C(activated protein C,APC)和抗APC多選試劑盒中的磁珠標(biāo)記的抗APC抗體陽(yáng)性分選出 CD4+ T淋巴細(xì)胞,比較兩種方法獲得細(xì)胞的得率、活性及純度;選擇得率、活性和純度較高的分選方法獲得的CD4+ T淋巴細(xì)胞,用磁珠標(biāo)記的抗人CD25抗體進(jìn)行陽(yáng)性分選,獲得 CD4+CD25+ Tregs,流式細(xì)胞儀檢測(cè)純度、活性及FoxP3表達(dá)水平,以及Tregs對(duì)刀豆蛋白(concanavalin A,ConA)刺激的自體CD4+CD25-效應(yīng)性T淋巴細(xì)胞(effective T cells,Teffs)增殖的抑制功能。 結(jié)果CD4+ T淋巴細(xì)胞陽(yáng)性分選和陰性分選后,細(xì)胞活性均達(dá)95%左右,差異無(wú)統(tǒng)計(jì)學(xué)意義(P gt; 0.05),但陽(yáng)性分選后CD4+ T淋巴細(xì)胞得率和純度均顯著高于陰性分選(P lt; 0.05)。后續(xù)CD4+CD25+ Tregs分選采用陽(yáng)性分選法獲得的CD4+ T淋巴細(xì)胞。經(jīng)雙陽(yáng)性分選收集的目的細(xì)胞中CD4+CD25+ Tregs占76.2% ± 8.6%,活細(xì)胞比例為93.3% ± 4.7%,F(xiàn)oxP3陽(yáng)性細(xì)胞比例為74.2% ± 6.9%?;旌吓囵B(yǎng)后Tregs均對(duì)ConA刺激的Teffs的增殖有抑制作用。 結(jié)論免疫磁珠雙陽(yáng)性分選法能有效分選出恒河猴外周血中有功能的CD4+CD25+ Tregs。
引用本文: 張爽,金熙,程漢佳,何斯榮,陳又南,龍丹,單娟,曾力,王成世,程驚秋,陸燕蓉. 恒河猴外周血調(diào)節(jié)性T淋巴細(xì)胞的分離純化及鑒定. 中國(guó)修復(fù)重建外科雜志, 2012, 26(10): 1237-1241. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國(guó)修復(fù)重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | Fan H, Cao P, Game DS, et al. Regulatory T cell therapy for induction of clinical organ transplantation tolerance. Semin Immunol, 2011, 23(6): 453-461. |
2. | Sagoo P, Lombardi G, Lechler RI. Relevance of regulatoty T cell promotion of donor-specific tolerance in solid organ transplantation. Front Immunol, 2012, 3: 184. |
3. | Dummer CD, Carpio VN, Gonçalves LF, et al. FOXP3+ regulatory T cells: from suppression of rejection to induction of renal allograft tolerance. Transpl Immunol, 2012, 26(1): 1-10. |
4. | Sakaguchi S, Yamaguchi T, Numura T, et al. Regulatory T cells and immune tolerance. Cell, 2008, 133(5): 775-787. |
5. | Riley JL, June CH, Blazar BR, et al. Human T regulatory cells therapy: take a billion or so and call me in the morning. Immunity, 2009, 30(5): 656-665. |
6. | 熊競(jìng), 劉克劍, 吳芳新, 等. 健康中國(guó)恒河猴各淋巴組織中T淋巴細(xì)胞表型及分布. 中國(guó)畜牧獸醫(yī), 2012, 39(2): 86-91. |
7. | 陳磊, 李楠, 王學(xué)廉, 等. 微電極引導(dǎo)偏側(cè)帕金森病猴腦深部電極植入方法的研究. 中國(guó)微侵襲神經(jīng)外科雜志, 2012, 17(1): 32-35. |
8. | Anderson A, Martens CL, Hendrix R, et al. Expanded nonhuman primate tregs exhibit a unique gene expression signature and potently downregulate alloimmune responses. Am J Transplant, 2008, 8(11): 2252-2263. |
9. | Yan H, Ding CG, Tian PX, et al. Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+CD25+ Treg cells. J Zhejiang Univ Sci B, 2009, 10(12): 928-932. |
10. | Bresatz S, Sadlon T, Millard D, et al. Isolation, propagation and characterization of cord blood derived CD4+CD25+ regulatory T cells. J Immunol Methods, 2007, 327(1-2): 53-62. |
11. | Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FoxP3. Science, 2003, 299(5609): 1057-1061. |
12. | 陳祚珈, 高雅懿, 李志遠(yuǎn), 等. FOXP3+調(diào)節(jié)性T細(xì)胞. 生命科學(xué), 2010, 22(6): 515-528. |
13. | 胡義平, 李曉娟, 劉叔文. ConA對(duì)CD4+CD25+調(diào)節(jié)性T細(xì)胞早期活化和功能的影響. 細(xì)胞與分子免疫學(xué)雜志, 2010, 26(2): 118-120, 124. |
14. | 呂夢(mèng)捷, 曾耀英, 宋兵. 人參皂苷Rb1 對(duì)小鼠T淋巴細(xì)胞體外活化、增殖及凋亡的影響. 中草藥, 2011, 42(4): 743-748. |
15. | Shevach EM. Regulatory T cells in autoimmunity. Ann Rev Immunol, 2000, 18: 423-449. |
16. | Campbell DJ, Ziegler SF. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol, 2007, 7(4): 305-310. |
17. | Carrigan SO, Yang YJ, Issekutz T, et al. Depletion of natural CD4+CD25+ T regulatory cells with anti-CD25 antibody does not change the course of Pseudomonas aeruginosa-induced acute lung infection in mice. Immunobiology, 2009, 214(3): 211-222. |
18. | Dons EM, Raimondi G, Cooper DK, et al. Non-human primate regulatory T cells: current biology and implications for transplantation. Transplantation, 2010, 90(8): 811-816. |
19. | Porter CM, Horvath-Arcidiacono JA, Singh AK, et al. Characterization and expansion of baboon CD4+CD25+ Treg cells for potential use in a non-human primate xenotransplantation model. Xenotransplantation, 2007, 14(4): 298-308. |
20. | Wang J, Huizinga TW, Toes RE. De novo generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid. J Immunol, 2009, 183(6): 4119-4126. |
21. | Fantini MC, Becker C, Monteleone G, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol, 2004, 172(9): 5149-5153. |
22. | Mucida D, Park YJ, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science, 2007, 317(5835): 256-260. |
23. | Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol, 2008, 29(9): 429-435. |
24. | Zhou X, Kong N, Zou H, et al. Therapeutic potential of TGF-β-induced CD4(+) Foxp3(+) regulatory T cells in autoimmune diseases. Autoimmunity, 2011, 44(1): 43-50. |
- 1. Fan H, Cao P, Game DS, et al. Regulatory T cell therapy for induction of clinical organ transplantation tolerance. Semin Immunol, 2011, 23(6): 453-461.
- 2. Sagoo P, Lombardi G, Lechler RI. Relevance of regulatoty T cell promotion of donor-specific tolerance in solid organ transplantation. Front Immunol, 2012, 3: 184.
- 3. Dummer CD, Carpio VN, Gonçalves LF, et al. FOXP3+ regulatory T cells: from suppression of rejection to induction of renal allograft tolerance. Transpl Immunol, 2012, 26(1): 1-10.
- 4. Sakaguchi S, Yamaguchi T, Numura T, et al. Regulatory T cells and immune tolerance. Cell, 2008, 133(5): 775-787.
- 5. Riley JL, June CH, Blazar BR, et al. Human T regulatory cells therapy: take a billion or so and call me in the morning. Immunity, 2009, 30(5): 656-665.
- 6. 熊競(jìng), 劉克劍, 吳芳新, 等. 健康中國(guó)恒河猴各淋巴組織中T淋巴細(xì)胞表型及分布. 中國(guó)畜牧獸醫(yī), 2012, 39(2): 86-91.
- 7. 陳磊, 李楠, 王學(xué)廉, 等. 微電極引導(dǎo)偏側(cè)帕金森病猴腦深部電極植入方法的研究. 中國(guó)微侵襲神經(jīng)外科雜志, 2012, 17(1): 32-35.
- 8. Anderson A, Martens CL, Hendrix R, et al. Expanded nonhuman primate tregs exhibit a unique gene expression signature and potently downregulate alloimmune responses. Am J Transplant, 2008, 8(11): 2252-2263.
- 9. Yan H, Ding CG, Tian PX, et al. Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+CD25+ Treg cells. J Zhejiang Univ Sci B, 2009, 10(12): 928-932.
- 10. Bresatz S, Sadlon T, Millard D, et al. Isolation, propagation and characterization of cord blood derived CD4+CD25+ regulatory T cells. J Immunol Methods, 2007, 327(1-2): 53-62.
- 11. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FoxP3. Science, 2003, 299(5609): 1057-1061.
- 12. 陳祚珈, 高雅懿, 李志遠(yuǎn), 等. FOXP3+調(diào)節(jié)性T細(xì)胞. 生命科學(xué), 2010, 22(6): 515-528.
- 13. 胡義平, 李曉娟, 劉叔文. ConA對(duì)CD4+CD25+調(diào)節(jié)性T細(xì)胞早期活化和功能的影響. 細(xì)胞與分子免疫學(xué)雜志, 2010, 26(2): 118-120, 124.
- 14. 呂夢(mèng)捷, 曾耀英, 宋兵. 人參皂苷Rb1 對(duì)小鼠T淋巴細(xì)胞體外活化、增殖及凋亡的影響. 中草藥, 2011, 42(4): 743-748.
- 15. Shevach EM. Regulatory T cells in autoimmunity. Ann Rev Immunol, 2000, 18: 423-449.
- 16. Campbell DJ, Ziegler SF. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol, 2007, 7(4): 305-310.
- 17. Carrigan SO, Yang YJ, Issekutz T, et al. Depletion of natural CD4+CD25+ T regulatory cells with anti-CD25 antibody does not change the course of Pseudomonas aeruginosa-induced acute lung infection in mice. Immunobiology, 2009, 214(3): 211-222.
- 18. Dons EM, Raimondi G, Cooper DK, et al. Non-human primate regulatory T cells: current biology and implications for transplantation. Transplantation, 2010, 90(8): 811-816.
- 19. Porter CM, Horvath-Arcidiacono JA, Singh AK, et al. Characterization and expansion of baboon CD4+CD25+ Treg cells for potential use in a non-human primate xenotransplantation model. Xenotransplantation, 2007, 14(4): 298-308.
- 20. Wang J, Huizinga TW, Toes RE. De novo generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid. J Immunol, 2009, 183(6): 4119-4126.
- 21. Fantini MC, Becker C, Monteleone G, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol, 2004, 172(9): 5149-5153.
- 22. Mucida D, Park YJ, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science, 2007, 317(5835): 256-260.
- 23. Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol, 2008, 29(9): 429-435.
- 24. Zhou X, Kong N, Zou H, et al. Therapeutic potential of TGF-β-induced CD4(+) Foxp3(+) regulatory T cells in autoimmune diseases. Autoimmunity, 2011, 44(1): 43-50.