目的 通過(guò)離體缺血-再灌注心臟模型,觀察缺血預(yù)處理(IPC)、缺血后處理(IPO)和肢體遠(yuǎn)端預(yù)處理(RIPC)后心臟microRNA1 (miRNA-1)和microRNA21 (miRNA-21)的表達(dá)變化,以及它們所調(diào)控靶蛋白熱休克蛋白70 (HSP70)和程序性細(xì)胞死亡4 (PDCD4)表達(dá)變化,期望從miRNA調(diào)控水平揭示心臟的內(nèi)源性保護(hù)機(jī)制。 方法 取Sprague-Dawley (SD)大鼠心臟,建立離體Langendorff心肌缺血-再灌注模型,隨機(jī)分為4組(每組12只),對(duì)照組、IPC組、IPO組和RIPC組。檢測(cè)各組血流動(dòng)力學(xué)指標(biāo),蛋白印跡法(Western blotting)檢測(cè)PDCD4、HSP70、B細(xì)胞淋巴瘤/白血病-2 (Bcl-2) 和Bcl-2相關(guān)X蛋白(Bax)含量,taqman探針?lè)z測(cè)miRNA-1和miRNA-21含量,末端脫氧核苷酸轉(zhuǎn)移酶介導(dǎo)的原位缺口標(biāo)記法(TUNEL) 檢測(cè)心肌細(xì)胞凋亡,2,3,5-氯化三苯基四氮唑(TTC) 法檢測(cè)心肌梗死面積。 結(jié)果 IPC組心肌的 miRNA-1和miRNA-21表達(dá)明顯高于對(duì)照組,但RIPC組和IPO組心肌的miRNA-1表達(dá)較對(duì)照組明顯降低 (P<0.05)。IPC組、RIPC組和IPO組心肌中HSP70、PDCD4和Bax蛋白含量較對(duì)照組明顯減少(P<0.05),Bcl-2蛋白含量各組間差異無(wú)統(tǒng)計(jì)學(xué)意義。IPC組、RIPC組和IPO組左室心肌梗死面積/左室總面積以及心肌細(xì)胞凋亡率明顯低于對(duì)照組(P<0.05)?!〗Y(jié)論 miRNA-1和miRNA-21在缺血預(yù)處理、缺血后處理和遠(yuǎn)端預(yù)處理后,表達(dá)變化是不同的,同時(shí)各處理組中miRNA與其靶蛋白并不都是負(fù)性調(diào)節(jié)關(guān)系。
引用本文: 段欣,王小華,吉冰洋,劉晉萍,龍村. MicroRNA-1和microRNA-21在缺血預(yù)處理、后處理及遠(yuǎn)端預(yù)處理中的表達(dá)變化. 中國(guó)胸心血管外科臨床雜志, 2012, 19(4): 402-406. doi: 復(fù)制
1. | Cardiovasc Res, 2001,51 (4):637-646. |
2. | Hausenloy DJ, Yellon DM. The evolving story of “conditioning” to protect against acute myocardial ischaemia-reperfusion injury. Heart, 2007, 93 (6):649-651. |
3. | Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74 (5):1124-1136. |
4. | Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol, 2003, 285 (2):H579-588. |
5. | Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic ′preconditioning′ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993, 87 (3):893-899. |
6. | Gho BC, Schoemaker RG, van den Doel MA, et al. Myocardial protection by brief ischemia in noncardiac tissue. Circulation, 1996, 94 (9):2193-2200. |
7. | Pell TJ, Baxter GF, Yellon DM, et al. Renal ischemia preconditions myocardium:role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol, 1998, 275 (5 Pt 2):H1542-1547. |
8. | Kharbanda RK, Mortensen UM, White PA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo.Circulation, 2002,106 (23):2881-2883. |
9. | Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol, 2007, 23 (1):175-205. |
10. | Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet, 2007, 8:215-239. |
11. | Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res, 2009,104 (5):572-575. |
12. | Cheng Y, Zhu P, Yang J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res,87 (3):431-439. |
13. | Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med, 2005,15 (2):69-75. |
14. | Wang Y, Xu H, Mizoguchi K, et al. Intestinal ischemia induces late preconditioning against myocardial infarction: a role for inducible nitric oxide synthase. Cardiovasc Res, 2001,49 (2):391-398. |
15. | Kuntscher MV, Kastell T, Altmann J, et al. Acute remote ischemic preconditioning II: the role of nitric oxide. Microsurgery, 2002,22 (6):227-231. |
16. | Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci, 2007,120 (Pt 17):3045-3052. |
17. | Kwon C, Han Z, Olson EN, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A, 2005,102 (52):18986-18991. |
18. | Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006,38 (2):228-233. |
19. | Heusch G, Boengler K, Schulz R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation, 2008,118 (19):1915-1919. |
20. | Latchman DS. Heat shock proteins and cardiac protection. |
21. | Hampton CR, Shimamoto A, Rothnie CL, et al. HSP70.1 and -70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts. Am J Physiol Heart Circ Physiol, 2003,285 (2):H866-874. |
22. | Wang G, Liem DA, Vondriska TM, et al. Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition. Am J Physiol Heart Circ Physiol, 2005,288 (3):H1290-1295. |
23. | Precht TA, Phelps RA, Linseman DA, et al. The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosis. Cell Death Differ, 2005,12 (3):255-265. |
24. | Schmitt JP, Schroder J, Schunkert H, et al. Role of apoptosis in myocardial stunning after open heart surgery. Ann Thorac Surg, 2002,73 (4):1229-1235. |
25. | Penna C, Tullio F, Merlino A, et al. Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol, 2009,104 (4):390-402. |
- 1. Cardiovasc Res, 2001,51 (4):637-646.
- 2. Hausenloy DJ, Yellon DM. The evolving story of “conditioning” to protect against acute myocardial ischaemia-reperfusion injury. Heart, 2007, 93 (6):649-651.
- 3. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74 (5):1124-1136.
- 4. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol, 2003, 285 (2):H579-588.
- 5. Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic ′preconditioning′ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993, 87 (3):893-899.
- 6. Gho BC, Schoemaker RG, van den Doel MA, et al. Myocardial protection by brief ischemia in noncardiac tissue. Circulation, 1996, 94 (9):2193-2200.
- 7. Pell TJ, Baxter GF, Yellon DM, et al. Renal ischemia preconditions myocardium:role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol, 1998, 275 (5 Pt 2):H1542-1547.
- 8. Kharbanda RK, Mortensen UM, White PA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo.Circulation, 2002,106 (23):2881-2883.
- 9. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol, 2007, 23 (1):175-205.
- 10. Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet, 2007, 8:215-239.
- 11. Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res, 2009,104 (5):572-575.
- 12. Cheng Y, Zhu P, Yang J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res,87 (3):431-439.
- 13. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med, 2005,15 (2):69-75.
- 14. Wang Y, Xu H, Mizoguchi K, et al. Intestinal ischemia induces late preconditioning against myocardial infarction: a role for inducible nitric oxide synthase. Cardiovasc Res, 2001,49 (2):391-398.
- 15. Kuntscher MV, Kastell T, Altmann J, et al. Acute remote ischemic preconditioning II: the role of nitric oxide. Microsurgery, 2002,22 (6):227-231.
- 16. Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci, 2007,120 (Pt 17):3045-3052.
- 17. Kwon C, Han Z, Olson EN, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A, 2005,102 (52):18986-18991.
- 18. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006,38 (2):228-233.
- 19. Heusch G, Boengler K, Schulz R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation, 2008,118 (19):1915-1919.
- 20. Latchman DS. Heat shock proteins and cardiac protection.
- 21. Hampton CR, Shimamoto A, Rothnie CL, et al. HSP70.1 and -70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts. Am J Physiol Heart Circ Physiol, 2003,285 (2):H866-874.
- 22. Wang G, Liem DA, Vondriska TM, et al. Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition. Am J Physiol Heart Circ Physiol, 2005,288 (3):H1290-1295.
- 23. Precht TA, Phelps RA, Linseman DA, et al. The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosis. Cell Death Differ, 2005,12 (3):255-265.
- 24. Schmitt JP, Schroder J, Schunkert H, et al. Role of apoptosis in myocardial stunning after open heart surgery. Ann Thorac Surg, 2002,73 (4):1229-1235.
- 25. Penna C, Tullio F, Merlino A, et al. Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol, 2009,104 (4):390-402.