• 1 . 南京醫(yī)科大學(xué)附屬南京第一醫(yī)院 胸心外科, 南京 210006;;
  • 2 . 南京醫(yī)科大學(xué)流行病與衛(wèi)生統(tǒng)計(jì)學(xué)系, 南京 210029;

目的 探討中國(guó)漢族人群轉(zhuǎn)化生長(zhǎng)因子Ⅱ型受體(transforming growth factor-β receptor type Ⅱ,TGFBR2)基因rs6785358 rs764522 位點(diǎn)多態(tài)性與風(fēng)濕性心臟?。╮heumatic heart disease,RHD)的關(guān)系。 方法 采用病例對(duì)照設(shè)計(jì),選擇2008 年10 月至2011 年1 月在南京醫(yī)科大學(xué)附屬南京第一醫(yī)院住院的風(fēng)濕性心臟病患者207 例作為風(fēng)濕性心臟病組(風(fēng)心病組)及性別年齡匹配的健康成人225 例作為對(duì)照組。采用聚合酶鏈反應(yīng)- 限制性片段多態(tài)性(PCR-RFLP)方法檢測(cè)兩組TGFBR2 基因rs6785358、rs764522 位點(diǎn)的多態(tài)性。 結(jié)果 風(fēng)心病組和對(duì)照組TGFBR2 基因rs6785358 位點(diǎn)AA、AG、GG 基因型頻率分別為72.0%、25.1%、2.9% 和68.9%、28.0%、3.1%,兩組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(χ2=0.50,P=0.78);A 和G 等位基因頻率分別為84.5%、15.5% 和 82.9%、17.1%,兩組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(χ2=0.43,P=0.51)。風(fēng)心病組和對(duì)照組rs764522 位點(diǎn)CC、CG、GG 基因型頻率分別為77.3%、21.3%、1.4% 和75.6%、21.3%、3.1%,兩組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(χ2=1.33,P=0.51);C 和G 等位基因頻率分別為87.9%、12.1% 和86.2%、13.8%,兩組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(χ2=0.55,P=0.46)。經(jīng)性別分層后,rs6785358 和rs764522 的基因型和等位基因頻率在風(fēng)心病組和對(duì)照組中的分布差異仍無(wú)統(tǒng)計(jì)學(xué)意義( P > 0.05)。結(jié)論 中國(guó)漢族人群TGFBR2 基因rs6785358、rs764522 位點(diǎn)多態(tài)性與風(fēng)濕性心臟病無(wú)明顯關(guān)聯(lián)。

引用本文: 李莉,黃福華,沈沖等. 中國(guó)漢族人群TGFBR2基因rs6785358、rs764522 多態(tài)性與風(fēng)濕性心臟病的關(guān)聯(lián)研究. 中國(guó)胸心血管外科臨床雜志, 2012, 19(1): 52-56. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國(guó)胸心血管外科臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1.  Hernández-Pacheco G, Flores-Domínguez C, Rodríguez-Pérez JM, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun, 2003, 21(1):59-63.
2.  Kim L, Kim do K, Yang WI, et al. Overexpression of transforming growth factor-beta 1 in the valvular fibrosis of chronic rheumatic heart disease. J Korean Med Sci, 2008, 23(1):41-48.
3.  Carapetis JR, Steer AC, Mulholland EK, et al. The global burden of group A streptococcal diseases. Lancet Infect Dis, 2005, 5(11):685-694.
4.  Rojas A, Padidam M, Cress D, et al. TGF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta. Biochim Biophys Acta, 2009, 1793(7):1165-1173.
5.  Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 1992, 48(2):361-372.
6.  Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta, 2008, 1782(4):197-228.
7.  Chou HT, Chen CH, Tsai CH, et al. Association between transforming growth factor-beta1 gene C-509T and T869C polymorphisms and rheumatic heart disease. Am Heart J, 2004, 148(1):181-186.
8.  Kamal H, Hussein G, Hassoba H, et al. Transforming growth factor-beta1 gene C-509T and T869C polymorphisms as possible risk factors in rheumatic heart disease in Egypt. Acta Cardiol, 2010, 65(2):177-183.
9.  Ozisik K, Emir M, Ulus AT, et al. The renin-angiotensin system genetic polymorphisms and rheumatic mitral valve disease. J Heart Valve Dis, 2004,13(1):33-37.
10.  Messias Reason IJ, Schafranski MD, Jensenius JC, et al. The association between mannose-binding lectin gene polymorphism and rheumatic heart disease. Hum Immunol, 2006, 67(12):991-998.
11.  Düzgün N, Duman T, Haydardedeo?lu FE, et al. Cytotoxic T lymphocyte-associated antigen-4 polymorphism in patients with rheumatic heart disease. Tissue Antigens, 2009, 74(6):539-542.
12.  Hua R, Xu JB, Wang JC, et al. Association of TNFAIP3 polymorphism with rheumatic heart disease in Chinese Han population. Immunogenetics, 2009, 61(11-12):739-744.
13.  Mohamed AA, Rashed LA, Shaker SM, et al. Association of tumor necrosis factor-alpha polymorphisms with susceptibility and clinical outcomes of rheumatic heart disease. Saudi Med J, 2010, 31(6):644-649.
14.  Mathew S, Murty VV, Cheifetz S, et al. Transforming growth factor receptor gene TGFBR2 maps to human chromosome band 3p22. Genomics, 1994, 20(1):114-115.
15.  Jin G, Wang L, Chen W, et al. Variant alleles of TGFB1 and TGFBR2 are associated with a decreased risk of gastric cancer in a Chinese population. Int J Cancer, 2007, 120(6):1330-1335.
16.  Baas AF, Medic J, van’t Slot R, et al. Association of the TGF-beta receptor genes with abdominal aortic aneurysm. Eur J Hum Genet, 2010, 18(2):240-244.
17.  Yun JY, Uhm YK, Kim HJ, et al. Transforming growth factor beta receptor II (TGFBR2) polymorphisms and the association with nonsegmental vitiligo in the Korean population. Int J Immunogenet, 2010, 37(4):289-291.
18.  Lim YH, Jeong YS, Kim SK, et al. Association between TGFBR2 gene polymorphism (rs2228048, Asn389Asn) and intracerebral hemorrhage in Korean population. Immunol Invest, 2011, 40(6):569-580.
  1. 1.  Hernández-Pacheco G, Flores-Domínguez C, Rodríguez-Pérez JM, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun, 2003, 21(1):59-63.
  2. 2.  Kim L, Kim do K, Yang WI, et al. Overexpression of transforming growth factor-beta 1 in the valvular fibrosis of chronic rheumatic heart disease. J Korean Med Sci, 2008, 23(1):41-48.
  3. 3.  Carapetis JR, Steer AC, Mulholland EK, et al. The global burden of group A streptococcal diseases. Lancet Infect Dis, 2005, 5(11):685-694.
  4. 4.  Rojas A, Padidam M, Cress D, et al. TGF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta. Biochim Biophys Acta, 2009, 1793(7):1165-1173.
  5. 5.  Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 1992, 48(2):361-372.
  6. 6.  Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta, 2008, 1782(4):197-228.
  7. 7.  Chou HT, Chen CH, Tsai CH, et al. Association between transforming growth factor-beta1 gene C-509T and T869C polymorphisms and rheumatic heart disease. Am Heart J, 2004, 148(1):181-186.
  8. 8.  Kamal H, Hussein G, Hassoba H, et al. Transforming growth factor-beta1 gene C-509T and T869C polymorphisms as possible risk factors in rheumatic heart disease in Egypt. Acta Cardiol, 2010, 65(2):177-183.
  9. 9.  Ozisik K, Emir M, Ulus AT, et al. The renin-angiotensin system genetic polymorphisms and rheumatic mitral valve disease. J Heart Valve Dis, 2004,13(1):33-37.
  10. 10.  Messias Reason IJ, Schafranski MD, Jensenius JC, et al. The association between mannose-binding lectin gene polymorphism and rheumatic heart disease. Hum Immunol, 2006, 67(12):991-998.
  11. 11.  Düzgün N, Duman T, Haydardedeo?lu FE, et al. Cytotoxic T lymphocyte-associated antigen-4 polymorphism in patients with rheumatic heart disease. Tissue Antigens, 2009, 74(6):539-542.
  12. 12.  Hua R, Xu JB, Wang JC, et al. Association of TNFAIP3 polymorphism with rheumatic heart disease in Chinese Han population. Immunogenetics, 2009, 61(11-12):739-744.
  13. 13.  Mohamed AA, Rashed LA, Shaker SM, et al. Association of tumor necrosis factor-alpha polymorphisms with susceptibility and clinical outcomes of rheumatic heart disease. Saudi Med J, 2010, 31(6):644-649.
  14. 14.  Mathew S, Murty VV, Cheifetz S, et al. Transforming growth factor receptor gene TGFBR2 maps to human chromosome band 3p22. Genomics, 1994, 20(1):114-115.
  15. 15.  Jin G, Wang L, Chen W, et al. Variant alleles of TGFB1 and TGFBR2 are associated with a decreased risk of gastric cancer in a Chinese population. Int J Cancer, 2007, 120(6):1330-1335.
  16. 16.  Baas AF, Medic J, van’t Slot R, et al. Association of the TGF-beta receptor genes with abdominal aortic aneurysm. Eur J Hum Genet, 2010, 18(2):240-244.
  17. 17.  Yun JY, Uhm YK, Kim HJ, et al. Transforming growth factor beta receptor II (TGFBR2) polymorphisms and the association with nonsegmental vitiligo in the Korean population. Int J Immunogenet, 2010, 37(4):289-291.
  18. 18.  Lim YH, Jeong YS, Kim SK, et al. Association between TGFBR2 gene polymorphism (rs2228048, Asn389Asn) and intracerebral hemorrhage in Korean population. Immunol Invest, 2011, 40(6):569-580.