目的 建立呼吸機所致肺損傷家兔模型并進行評價。方法 40 只家兔隨機分為3 組:常規(guī)8 mL/kg 潮氣量組( VT8 組) 、25 mL/kg 大潮氣量組( VT25 組) 、40 mL/kg 大潮氣量組( VT40 組) ;除了VT8 組外, VT25 和VT40 組內(nèi)再分為2 h 和4 h 機械通氣兩個亞組。監(jiān)測通氣過程中的動脈血氣、肺機械力學(xué)和血流動力學(xué)變化; 肺組織HE 染色觀察肺損傷情況; 測定肺濕/ 干比、BALF 蛋白濃度, 計數(shù)BALF中有核細胞和中性粒細胞數(shù)目。比較不同通氣條件下家兔的肺損傷程度和重要的生理參數(shù), 確定復(fù)制呼吸機所致肺損傷家兔模型的最適條件。結(jié)果 與VT8 組相比較, 大潮氣量通氣組的肺損傷評分顯著升高, 其中以VT40 通氣4 h亞組最高。VT40 組鏡下可見肺泡結(jié)構(gòu)變形, 肺間質(zhì)及肺泡腔滲出, 炎癥細胞浸潤, 部分肺組織實變及肺泡出血。VT25 組則主要表現(xiàn)為肺間隔增厚, 炎癥細胞浸潤, 肺泡腔內(nèi)滲出較少。隨通氣時間延長, 大潮氣量通氣組的PaO2 /FiO2 呈下降趨勢, 其中VT40 組在通氣3 h( lt; 300 mm Hg) 已符合急性肺損傷標準, 而VT25 組在各時間點PaO2 /FiO2 均在300 mmHg 以上。大潮氣量通氣組的肺濕/ 干比、BALF 蛋白濃度及細胞數(shù)較VT8 組有顯著升高, 并隨通氣時間延長而增加, 以VT40 通氣4 h亞組最高。結(jié)論 使用潮氣量40 mL/kg 通氣4 h 能夠復(fù)制出理想的呼吸機所致肺損傷家兔模型。
引用本文: 安莉,周美玲,秦雪冰,劉慶輝,劉長庭,俞森洋. 呼吸機所致肺損傷家兔模型的建立與評價. 中國呼吸與危重監(jiān)護雜志, 2010, 9(2): 163-167. doi: 復(fù)制
1. | Torsten C, Schreiber MD, Walter A, et al. Lung injury caused by mechanical ventilation. Contem Crit Care, 2005, 3: 1 -12 . |
2. | Sinclair SE, Altemeier WA, Matute-Bello G, et al. Augmented lung injury due to interaction between hyperoxia and mechanical ventilation. Crit Care Med, 2004 , 32 : 2496-2501. |
3. | Sinclair SE, Kregenow DA, Lamm WJ, et al. Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med, 2002 , 166: 403-408. |
4. | Wilson MR, Choudhury S, Goddard ME, et al. High tidal volume upregulates intrapulmonary cytokines in an in vivo mouse model of ventilator-induced lung injury. J Appl Physiol, 2003 , 95 : 1385 -1393. |
5. | Verbrugge SJ, Uhlig S, Neggers SJ, et al. Different ventilation strategies affect lung function but do not increase tumor necrosis factor-alpha and prostacyclin production in lavaged rat lungs in vivo. Anesthesiology, 1999, 91 : 1834-1843. |
6. | Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med, 1999, 160: 109-116 . |
7. | DiRocco JD, Pavone LA, Carney DE, et al. Dynamic alveolar mechanics in four models of lung injury. Intensive Care Med, 2006 ,32: 140-148 . |
8. | Altemeier WA, Matute-Bello G, Frevert CW, et al. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am J Physiol Lung Cell Mol Physiol, 2004, 287 : L533-L542. |
9. | Walder B, Fontao E, Totsch M, et al. Time and tidal volumedependent ventilator-induced lung injury in healthy rats. Eur J Anaesthesiol, 2005, 22: 785 -794. |
10. | Egan EA, Nelson RM, Olver RE. Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol, 1976 , 260: 409-424. |
11. | Parker JC, Townsley MI, Rippe B, et al. Increased microvascular permeability in dog lungs due to high peak airway pressures. JAppl Physiol, 1984 , 57: 1809-1816. |
12. | Dreyfuss D, Ricard JD, Saumon G. On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med, 2003 , 167: 1467-1471. |
- 1. Torsten C, Schreiber MD, Walter A, et al. Lung injury caused by mechanical ventilation. Contem Crit Care, 2005, 3: 1 -12 .
- 2. Sinclair SE, Altemeier WA, Matute-Bello G, et al. Augmented lung injury due to interaction between hyperoxia and mechanical ventilation. Crit Care Med, 2004 , 32 : 2496-2501.
- 3. Sinclair SE, Kregenow DA, Lamm WJ, et al. Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med, 2002 , 166: 403-408.
- 4. Wilson MR, Choudhury S, Goddard ME, et al. High tidal volume upregulates intrapulmonary cytokines in an in vivo mouse model of ventilator-induced lung injury. J Appl Physiol, 2003 , 95 : 1385 -1393.
- 5. Verbrugge SJ, Uhlig S, Neggers SJ, et al. Different ventilation strategies affect lung function but do not increase tumor necrosis factor-alpha and prostacyclin production in lavaged rat lungs in vivo. Anesthesiology, 1999, 91 : 1834-1843.
- 6. Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med, 1999, 160: 109-116 .
- 7. DiRocco JD, Pavone LA, Carney DE, et al. Dynamic alveolar mechanics in four models of lung injury. Intensive Care Med, 2006 ,32: 140-148 .
- 8. Altemeier WA, Matute-Bello G, Frevert CW, et al. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am J Physiol Lung Cell Mol Physiol, 2004, 287 : L533-L542.
- 9. Walder B, Fontao E, Totsch M, et al. Time and tidal volumedependent ventilator-induced lung injury in healthy rats. Eur J Anaesthesiol, 2005, 22: 785 -794.
- 10. Egan EA, Nelson RM, Olver RE. Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol, 1976 , 260: 409-424.
- 11. Parker JC, Townsley MI, Rippe B, et al. Increased microvascular permeability in dog lungs due to high peak airway pressures. JAppl Physiol, 1984 , 57: 1809-1816.
- 12. Dreyfuss D, Ricard JD, Saumon G. On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med, 2003 , 167: 1467-1471.