目的 介紹胃腸道營養(yǎng)物質代謝與胰高血糖素樣態(tài)-1(GLP-1)水平關系的研究現(xiàn)狀。
方法 收集近年來國內、外有關胃腸道營養(yǎng)物質代謝與GLP-1水平關系的文獻并作綜述。
結果 GLP-1影響胰島素的分泌及其敏感性,在糖代謝恢復中發(fā)揮主導作用。胃腸道營養(yǎng)物質代謝影響GLP-1水平。胃轉流術(GBP)治療2型糖尿?。═2DM)可能主要與其影響GLP-1水平有關。
結論 胃腸道營養(yǎng)物質代謝調控GLP-1水平在GBP治療T2DM 中起了重要作用,相應的深入研究將為T2DM的治療開辟一個新的領域。
引用本文: 馮瀟,王勇. 胃腸道營養(yǎng)物質代謝與胰高血糖素樣肽-1水平改變△. 中國普外基礎與臨床雜志, 2012, 19(12): 1286-1290. doi: 復制
版權信息: ?四川大學華西醫(yī)院華西期刊社《中國普外基礎與臨床雜志》版權所有,未經授權不得轉載、改編
1. | Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12):1090-1101. |
2. | Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysialogy[J]. JAMA, 2009, 301(20): 2129-2140. |
3. | Detournay B, Cros S, Charbonnel B, et al. Managing type2 diabetes in France: the ECODIA surgery[J]. DiabetesMetab, 2000, 26(5): 363-369. |
4. | Kirchner H, Guijarro A, Meguid MM. Is a model useful in exploring the catabolic mechanisms of weight loss after gastric bypass in humans[J]. Curr Opin Clin Nutr Metab Care, 2007, 10(4):463-474. |
5. | Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999-2000[J]. JAMA, 2002, 288(14):1723-1727. |
6. | Martins C, Robertson MD, Morgan LM. Effects of exercise and restrained eating behaviour on appetite control[J]. Proc Nutr Soc, 2008, 67(1):28-41. |
7. | Rubino F, Gagner M. Potential of surgery for curing type 2diabetes mellitus[J]. Ann Surg, 2002, 236(5):554-559. |
8. | Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery:a systematic review and meta-analysis[J]. JAMA, 2004, 292(14):1724-1737. |
9. | Gumbs AA, Modlin IM, Ballantyne GH. Changes in insulinresistance following bariatric surgery:role of caloric restriction and weight loss[J]. Obes Surg, 2005, 15(4):462-473. |
10. | Zhang GY, Wang TT, Cheng ZQ, et al. Resolution of diabetes mellitus by ileal transposition compared with biliopancreaticdiversion in a nonobese animal model of type 2 diabetes[J]. Can J Surg, 2011, 54(4):243-251. |
11. | DeMaria EJ, Sugerman HJ, Kellum JM, et al. Results of 281 consecutive total laparoscopic Roux-en-Y gastric bypasses to treat morbid obesity[J]. Ann Surg, 2002, 235(5):640-645. |
12. | Chai F, Wang Y, Zhou Y, et al. Adiponectin downregulateshyperglycemia and reduces pancreatic islet apoptosis after Roux-en-Y gastric bypass surgery[J]. Obes Surg, 2011, 21(6):768-773. |
13. | Umeda LM, Silva EA, Carneiro G, et al. Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP-1, and glucagon secretion in type 2 diabetic patients[J]. Obes Surg, 2011, 21(7):896-901. |
14. | Laferrère B, Heshka S, Wang K, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes[J]. Diabetes Care, 2007, 30(7):1709-1716. |
15. | Wang Y, Liu J. Sleeve gastrectomy relieves steatohepatitis in high-fat-diet-induced obese rats[J]. Obes Surg, 2009, 19(7):921-925. |
16. | Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery[J]. N Engl J Med, 2007, 357(8):753-761. |
17. | Wickremesekera K, Miller G, Naotunne TD, et al. Loss ofinsulin resistance after Roux-en-Y gastric bypass surgery:a time course study[J]. Obes Surg, 2005, 15(4):474-481. |
18. | Clements RH, Gonzalez QH, Long CI, et al. Hormonal changes after Roux-en-Y gastric bypass for morbid obesity and the control of type-Ⅱ diabetes mellitus[J]. Am Surg, 2004, 70(1):1-5. |
19. | Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism[J]. Ann Surg, 2004, 240(2):236-242. |
20. | Liu Y, Zhou Y, Wang Y, et al. Roux-en-Y gastric bypass-induced improvement of glucose tolerance and insulin resistance in type 2 diabetic rats are mediated by glucagon-like peptide-1[J]. Obes Surg, 2011, 21(9):1424-1431. |
21. | Zhou H, Yamada Y, Tsukiyama K, et al. Gastric inhibitory polypeptide modulates adiposity and fat oxidation under diminished insulin action[J]. Biochem Biophys Res Commun, 2005, 335(3):937-942. |
22. | Rasouli M, Ahmad Z, Omar AR, et al. Engineering an L-cell line that expresses insulin under the control of the glucagon-like peptide-1 promoter for diabetes treatment[J]. BMC Biotechnol, 2011, 11:99. |
23. | Bose M, Oliván B, Teixeira J, et al. Do incretins play a role in the remission of type 2 diabetes after gastric bypass surgery:what are the evidence?[J]. Obes Surg, 2009, 19(2):217-229. |
24. | Cho YM, Kieffer TJ. New aspects of an old drug:metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser[J]. Diabetologia, 2011, 54(2):219-222. |
25. | Bai J, Wang Y, Liu Y, et al. Sleeve gastrectomy prevents lipoprotein receptor-1 expression in aortas of obese rats[J]. World J Gastroenterol, 2011, 17(32):3739-3744. |
26. | Li SQ, Zhou Y, Wang Y, et al. Upregulation of IRS-1 expression in goto-kakizaki rats following Roux-en-Y gastric bypass surgery:resolution of type 2 diabetes?[J]. Tohoku J Exp Med, 2011, 225(3):179-186. |
27. | Evans S, Pamuklar Z, Rosko J, et al. Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction[J]. Surg Endosc, 2012, 26(4):1086-1094. |
28. | Flint A, Kapitza C, Hindsberger C, et al. The once-daily humanglucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients[J]. Adv Ther, 2011, 28(3):213-226. |
29. | Koliaki C, Doupis J. Incretin-based therapy:a powerful and promising weapon in the treatment of type 2 diabetes mellitus[J]. Diabetes Ther, 2011, 2(2):101-121. |
30. | Lee HC, Kim MK, Kwon HS, et al. Early changes in incretin secretion after laparoscopic duodenal-jejunal bypass surgery in type 2 diabetic patients[J]. Obes Surg, 2010, 20(11):1530-1535. |
31. | Patriti A, Facchiano E, Sanna A, et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery[J]. Obes Surg, 2004, 14(6):840-848. |
32. | Thaler JP, Cummings DE. Minireview:Hormonal and metabolicmechanisms of diabetes remission after gastrointestinal surgery[J]. Endocrinology, 2009, 150(6):2518-2525. |
33. | Lee WJ, Lee YC, Ser KH, et al. Improvement of insulin resistance after obesity surgery:a comparison of gastric banding and bypass procedures[J]. Obes Surg, 2008, l8(9):1119-1125. |
34. | Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diametes:a new perspective for an old disease[J]. Ann Surg, 2004, 239(1):1-11. |
35. | Wang Y, Liu J. Combination of bypassing stomach and vagus dissection in high-fat diet-induced obese rats——a long-terminvestigation[J]. Obes Surg, 2010, 20(3):375-379. |
36. | Rodrigo L, José P, Marcos T, et al. Incretins:clinical physiology and bariatric surgery——correlating the entero-endocrine system and a potentially anti-dysmetabolic procedure[J]. Obes Surg, 2007, 17(5):573-580. |
37. | Wang Y, Liu JG. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy[J]. Obes Surg, 2009, 19(3):357-362. |
38. | Cai D, Yuan M, Frantz DF, et a1. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB[J]. Nat Med, 2005, 11(2):183-190. |
39. | Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver[J]. Diabetes, 2005, 54(12):3458-3465. |
40. | Hotamisligil GS. Inflammation and metabolic disorders[J]. Nature, 2006, 444(7121):860-867. |
41. | Moon MJ, Kim HY, Park S, et al. Insulin contributes to fine-tuning of the pancreatic beta-cell response to glucagon-like peptide-1[J]. Mol Cells, 2011, 32(4):389-395. |
42. | Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of proximal small intestine in the pathophysiology of type 2 diabetes[J]. Ann Surg, 2006, 244(5):741-749. |
43. | Holt SH, Brand-Miller JC, Stitt PA. The effects of equal-energy portions of different breads on blood glucose levels, feelings of fullness and subsequent food intake[J]. J Am Diet Assoc, 2001, 101(7):767-773. |
44. | Anini Y, Fu CX, Cuber JC, et al. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat[J]. Pflugers Arch, 1999, 438(3):299-306. |
45. | Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1(7-36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man:acute post-prandial and 24-h secretion patterns[J]. J Endocrinol, 1993, 138(1):159-166. |
46. | Gniuli D, Calcagno A, Dalla Libera L, et al. High-fat feedingstimulates endocrine, glucose-dependent insulinotropic polypeptide(GIP)-expressing cell hyperplasia in the duodenum of Wistar rats[J]. Diabetologia, 2010, 53(10):2233-2240. |
47. | Kaji I, Karaki S, Tanaka R, et al. Density distribution of free fattyacid receptor 2(FFA2)-expressing and GLP-1-producing enteroen-docrine L cells in human and rat lower intestine, and increased cellnumbers after ingestion of fructo-oligosaccharide[J]. J Mol Histol, 2011, 42(1):27-38. |
48. | Lavin JH, Wittert GA, Andrews J, et al. Interaction of insulin, glucagon-like peptide-1, gastric inhibitory polypeptide, andappetite in response to intraduodenal carbohydrate[J]. Am J Clin Nutr, 1998, 68(3):591-598. |
49. | Younes A, Brubaker PL. Glucagon-like peptides:GLP-1 and GLP-2//Henry HL, Norman AW. ed. Encyclopedia of Hormones[M]. San Diego, EUA:Academic Press, 2003:55-62. |
50. | Morínigo R, Moizé V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects[J]. J Clin Endocrinol Metab, 2006, 91(5):1735-1740. |
51. | Mochida T, Hira T, Hara H. The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-Ⅳactivity in rats[J]. Endocrinology, 2010, 151(7):3095-3104. |
52. | Tahrani AA, Piya MK, Barnett AH. Saxagliptin:a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus[J]. Adv Ther, 2009, 26(3):249-262. |
53. | Dumoulin V, Moro F, Barcelo A, et al. Peptide YY, glucagon-likepeptide-1, and neurotensin responses to luminal factors in theisolated vascularly perfused rat ileum[J]. Endocrinology, 1998, 139(9):3780-3786. |
54. | Cordier-Bussat M, Bernard C, Levenez F, et al. Peptones stimulate both the secretion of the incretin hormone glucagon-likepeptide-1 and the transcription of the proglucagon gene[J]. Diabetes, 1998, 47(7):1038-1045. |
55. | Hall WL, Millward DJ, Long SJ, et al. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite[J]. Br J Nutr, 2003, 89(2):239-248. |
56. | Reimer RA, Russell JC. Glucose tolerance, lipids, and GLP-1secretion in JCR:LA-cp rats fed a high protein fiber diet[J]. Obesity (Silver Spring), 2008, 16(1):40-46. |
57. | Greenfield JR, Farooqi IS, Keogh JM, et al. Oral glutamineincrease circulating glucagons-like peptide-1, glucagon, andinsulin concentration in lean, obsese, and type 2 diabetic subjects[J]. Am J Clin Nutr, 2009, 89(1):106-113. |
58. | Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagon-like peptide-1 and energy metabolism by inulin and oligofructose:experimental data[J]. J Nutr, 2007, 137(11 Suppl):2547S-2551S. |
59. | Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats[J]. Br J Nutr, 2004, 92(3):521-526. |
- 1. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12):1090-1101.
- 2. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysialogy[J]. JAMA, 2009, 301(20): 2129-2140.
- 3. Detournay B, Cros S, Charbonnel B, et al. Managing type2 diabetes in France: the ECODIA surgery[J]. DiabetesMetab, 2000, 26(5): 363-369.
- 4. Kirchner H, Guijarro A, Meguid MM. Is a model useful in exploring the catabolic mechanisms of weight loss after gastric bypass in humans[J]. Curr Opin Clin Nutr Metab Care, 2007, 10(4):463-474.
- 5. Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999-2000[J]. JAMA, 2002, 288(14):1723-1727.
- 6. Martins C, Robertson MD, Morgan LM. Effects of exercise and restrained eating behaviour on appetite control[J]. Proc Nutr Soc, 2008, 67(1):28-41.
- 7. Rubino F, Gagner M. Potential of surgery for curing type 2diabetes mellitus[J]. Ann Surg, 2002, 236(5):554-559.
- 8. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery:a systematic review and meta-analysis[J]. JAMA, 2004, 292(14):1724-1737.
- 9. Gumbs AA, Modlin IM, Ballantyne GH. Changes in insulinresistance following bariatric surgery:role of caloric restriction and weight loss[J]. Obes Surg, 2005, 15(4):462-473.
- 10. Zhang GY, Wang TT, Cheng ZQ, et al. Resolution of diabetes mellitus by ileal transposition compared with biliopancreaticdiversion in a nonobese animal model of type 2 diabetes[J]. Can J Surg, 2011, 54(4):243-251.
- 11. DeMaria EJ, Sugerman HJ, Kellum JM, et al. Results of 281 consecutive total laparoscopic Roux-en-Y gastric bypasses to treat morbid obesity[J]. Ann Surg, 2002, 235(5):640-645.
- 12. Chai F, Wang Y, Zhou Y, et al. Adiponectin downregulateshyperglycemia and reduces pancreatic islet apoptosis after Roux-en-Y gastric bypass surgery[J]. Obes Surg, 2011, 21(6):768-773.
- 13. Umeda LM, Silva EA, Carneiro G, et al. Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP-1, and glucagon secretion in type 2 diabetic patients[J]. Obes Surg, 2011, 21(7):896-901.
- 14. Laferrère B, Heshka S, Wang K, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes[J]. Diabetes Care, 2007, 30(7):1709-1716.
- 15. Wang Y, Liu J. Sleeve gastrectomy relieves steatohepatitis in high-fat-diet-induced obese rats[J]. Obes Surg, 2009, 19(7):921-925.
- 16. Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery[J]. N Engl J Med, 2007, 357(8):753-761.
- 17. Wickremesekera K, Miller G, Naotunne TD, et al. Loss ofinsulin resistance after Roux-en-Y gastric bypass surgery:a time course study[J]. Obes Surg, 2005, 15(4):474-481.
- 18. Clements RH, Gonzalez QH, Long CI, et al. Hormonal changes after Roux-en-Y gastric bypass for morbid obesity and the control of type-Ⅱ diabetes mellitus[J]. Am Surg, 2004, 70(1):1-5.
- 19. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism[J]. Ann Surg, 2004, 240(2):236-242.
- 20. Liu Y, Zhou Y, Wang Y, et al. Roux-en-Y gastric bypass-induced improvement of glucose tolerance and insulin resistance in type 2 diabetic rats are mediated by glucagon-like peptide-1[J]. Obes Surg, 2011, 21(9):1424-1431.
- 21. Zhou H, Yamada Y, Tsukiyama K, et al. Gastric inhibitory polypeptide modulates adiposity and fat oxidation under diminished insulin action[J]. Biochem Biophys Res Commun, 2005, 335(3):937-942.
- 22. Rasouli M, Ahmad Z, Omar AR, et al. Engineering an L-cell line that expresses insulin under the control of the glucagon-like peptide-1 promoter for diabetes treatment[J]. BMC Biotechnol, 2011, 11:99.
- 23. Bose M, Oliván B, Teixeira J, et al. Do incretins play a role in the remission of type 2 diabetes after gastric bypass surgery:what are the evidence?[J]. Obes Surg, 2009, 19(2):217-229.
- 24. Cho YM, Kieffer TJ. New aspects of an old drug:metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser[J]. Diabetologia, 2011, 54(2):219-222.
- 25. Bai J, Wang Y, Liu Y, et al. Sleeve gastrectomy prevents lipoprotein receptor-1 expression in aortas of obese rats[J]. World J Gastroenterol, 2011, 17(32):3739-3744.
- 26. Li SQ, Zhou Y, Wang Y, et al. Upregulation of IRS-1 expression in goto-kakizaki rats following Roux-en-Y gastric bypass surgery:resolution of type 2 diabetes?[J]. Tohoku J Exp Med, 2011, 225(3):179-186.
- 27. Evans S, Pamuklar Z, Rosko J, et al. Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction[J]. Surg Endosc, 2012, 26(4):1086-1094.
- 28. Flint A, Kapitza C, Hindsberger C, et al. The once-daily humanglucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients[J]. Adv Ther, 2011, 28(3):213-226.
- 29. Koliaki C, Doupis J. Incretin-based therapy:a powerful and promising weapon in the treatment of type 2 diabetes mellitus[J]. Diabetes Ther, 2011, 2(2):101-121.
- 30. Lee HC, Kim MK, Kwon HS, et al. Early changes in incretin secretion after laparoscopic duodenal-jejunal bypass surgery in type 2 diabetic patients[J]. Obes Surg, 2010, 20(11):1530-1535.
- 31. Patriti A, Facchiano E, Sanna A, et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery[J]. Obes Surg, 2004, 14(6):840-848.
- 32. Thaler JP, Cummings DE. Minireview:Hormonal and metabolicmechanisms of diabetes remission after gastrointestinal surgery[J]. Endocrinology, 2009, 150(6):2518-2525.
- 33. Lee WJ, Lee YC, Ser KH, et al. Improvement of insulin resistance after obesity surgery:a comparison of gastric banding and bypass procedures[J]. Obes Surg, 2008, l8(9):1119-1125.
- 34. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diametes:a new perspective for an old disease[J]. Ann Surg, 2004, 239(1):1-11.
- 35. Wang Y, Liu J. Combination of bypassing stomach and vagus dissection in high-fat diet-induced obese rats——a long-terminvestigation[J]. Obes Surg, 2010, 20(3):375-379.
- 36. Rodrigo L, José P, Marcos T, et al. Incretins:clinical physiology and bariatric surgery——correlating the entero-endocrine system and a potentially anti-dysmetabolic procedure[J]. Obes Surg, 2007, 17(5):573-580.
- 37. Wang Y, Liu JG. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy[J]. Obes Surg, 2009, 19(3):357-362.
- 38. Cai D, Yuan M, Frantz DF, et a1. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB[J]. Nat Med, 2005, 11(2):183-190.
- 39. Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver[J]. Diabetes, 2005, 54(12):3458-3465.
- 40. Hotamisligil GS. Inflammation and metabolic disorders[J]. Nature, 2006, 444(7121):860-867.
- 41. Moon MJ, Kim HY, Park S, et al. Insulin contributes to fine-tuning of the pancreatic beta-cell response to glucagon-like peptide-1[J]. Mol Cells, 2011, 32(4):389-395.
- 42. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of proximal small intestine in the pathophysiology of type 2 diabetes[J]. Ann Surg, 2006, 244(5):741-749.
- 43. Holt SH, Brand-Miller JC, Stitt PA. The effects of equal-energy portions of different breads on blood glucose levels, feelings of fullness and subsequent food intake[J]. J Am Diet Assoc, 2001, 101(7):767-773.
- 44. Anini Y, Fu CX, Cuber JC, et al. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat[J]. Pflugers Arch, 1999, 438(3):299-306.
- 45. Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1(7-36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man:acute post-prandial and 24-h secretion patterns[J]. J Endocrinol, 1993, 138(1):159-166.
- 46. Gniuli D, Calcagno A, Dalla Libera L, et al. High-fat feedingstimulates endocrine, glucose-dependent insulinotropic polypeptide(GIP)-expressing cell hyperplasia in the duodenum of Wistar rats[J]. Diabetologia, 2010, 53(10):2233-2240.
- 47. Kaji I, Karaki S, Tanaka R, et al. Density distribution of free fattyacid receptor 2(FFA2)-expressing and GLP-1-producing enteroen-docrine L cells in human and rat lower intestine, and increased cellnumbers after ingestion of fructo-oligosaccharide[J]. J Mol Histol, 2011, 42(1):27-38.
- 48. Lavin JH, Wittert GA, Andrews J, et al. Interaction of insulin, glucagon-like peptide-1, gastric inhibitory polypeptide, andappetite in response to intraduodenal carbohydrate[J]. Am J Clin Nutr, 1998, 68(3):591-598.
- 49. Younes A, Brubaker PL. Glucagon-like peptides:GLP-1 and GLP-2//Henry HL, Norman AW. ed. Encyclopedia of Hormones[M]. San Diego, EUA:Academic Press, 2003:55-62.
- 50. Morínigo R, Moizé V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects[J]. J Clin Endocrinol Metab, 2006, 91(5):1735-1740.
- 51. Mochida T, Hira T, Hara H. The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-Ⅳactivity in rats[J]. Endocrinology, 2010, 151(7):3095-3104.
- 52. Tahrani AA, Piya MK, Barnett AH. Saxagliptin:a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus[J]. Adv Ther, 2009, 26(3):249-262.
- 53. Dumoulin V, Moro F, Barcelo A, et al. Peptide YY, glucagon-likepeptide-1, and neurotensin responses to luminal factors in theisolated vascularly perfused rat ileum[J]. Endocrinology, 1998, 139(9):3780-3786.
- 54. Cordier-Bussat M, Bernard C, Levenez F, et al. Peptones stimulate both the secretion of the incretin hormone glucagon-likepeptide-1 and the transcription of the proglucagon gene[J]. Diabetes, 1998, 47(7):1038-1045.
- 55. Hall WL, Millward DJ, Long SJ, et al. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite[J]. Br J Nutr, 2003, 89(2):239-248.
- 56. Reimer RA, Russell JC. Glucose tolerance, lipids, and GLP-1secretion in JCR:LA-cp rats fed a high protein fiber diet[J]. Obesity (Silver Spring), 2008, 16(1):40-46.
- 57. Greenfield JR, Farooqi IS, Keogh JM, et al. Oral glutamineincrease circulating glucagons-like peptide-1, glucagon, andinsulin concentration in lean, obsese, and type 2 diabetic subjects[J]. Am J Clin Nutr, 2009, 89(1):106-113.
- 58. Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagon-like peptide-1 and energy metabolism by inulin and oligofructose:experimental data[J]. J Nutr, 2007, 137(11 Suppl):2547S-2551S.
- 59. Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats[J]. Br J Nutr, 2004, 92(3):521-526.